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「濡れ性粒子を含んだ二相流体の直接シミュレーション」は、二相流の表現方法、

固体粒子の表現方法、およびそれらの支配方程式を解くためのアルゴリズムなどが

選択され巧みに組み合わされたものである。そこで本研究では、まずは液液二相流

体の直接シミュレーションにかかる複数の要素手法を実装し、それらを比較・検討

した。離散化 Poisson 方程式の直接解法の実装によって、直接シミュレーションの

高速化に成功した。これにより、時間発展方程式に対して複数の数値計算法、4 つ

の易動度テンソル、3 つの界面張力モデルなどを実装し比較・検討することができ

た。しかしながら、「等密度液液二相流体中における濡れ性粒子の 2 次元シミュレ

ーション」の高速化・高精度化を実施している途中で助成期間が終了してしまった

ため、今後も引き続き当該研究を進める予定である。 

2.1. はじめに 

砂城をつくろうとするとき、砂(砂粒の集団)を水で適度に湿らすのが良いこと

は、砂場や砂浜での遊びを通して、誰しもが体験しているであろう。また、川面に

浮かぶ泡やごみ、ラーメン汁の表面に浮かぶ胡麻などを注意深く観察すると、これ

らは自然に集まることに気付くであろう。前者では毛管架橋力が、後者では横毛管

力が自己集合の駆動力となっている。このような二種類の毛管力は、自然界や我々

の身の周りばかりでなく、種々の産業プロセスにおいても頻繁に現れる力であり、

粒子集積化技術の一手段としても積極的に利用されている。このため、重力場・流

れ場における「気/液/ぬれ性粒子分散系」の非平衡的な挙動を理解することが重要

となる。 



 
筆者らは、格子ボルツマン法(lattice Boltzmann method, LBM)をベースとして統計

力学と流体力学が連結した新しい方法を開発・駆使し、固体壁面上における液滴(図

1)、蒸気中で液体薄膜に覆われた二粒子間に働く毛管架橋力(図 2)、気液界面に付着

した二粒子間に働く横毛管力(図 3)などの定量的シミュレーションに成功した。しか

し、数値計算の速度・安定性の制約のため、2 次元系かつ気液密度比 5 倍にとどま

っている。一方、他の研究グループによる報告では、気液二相流に対する固体粒子

の濡れ性のモデル化が不完全であること、シミュレーションから得られた毛管架橋

力および横毛管力の定量的な検証がほとんどなされていないことなど、致命的な弱

点・欠陥がある。さらに近年、上記のような研究報告は格子ボルツマン法によるも

のがほとんどで、直接シミュレーション(direct numerical simulation, DNS)による研究

報告はほとんどないのが現状である。 
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図 1 化学的不均質性の異なる親水性固体壁面上における液滴の挙動: (A)均質な

表面, (B)不均質性の小さい表面, (C)不均質性の大きい表面。 
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図 2 蒸気中で液体薄膜に覆われた二つの円柱の間に働く相互作用力。 
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図 3 気液界面に置かれた二つの円柱。D = 32.2Δxでのスナップショット: (A)二

つの親水性円柱, (B)二つの疎水性円柱, (C) 親水性円柱と疎水性円柱, (D)相互作用

力。 

 

そこで本研究では、DNS による「密度比 1000 倍の気液二相流体中における濡れ

性粒子の 3 次元シミュレーション」を実現させるため、独自の計算モデルを拡張す

るだけではなく、計算アルゴリズムを高速化することを目指した。しかしながら、

「等密度液液二相流体中における濡れ性粒子の 2 次元シミュレーション」の高速

化・高精度化を実施している途中で助成期間が終了してしまったため、以下ではそ

の研究成果を報告する。 

 

2.2. シミュレーション方法 

2.2.1 液液二相流および固体粒子の拡散界面モデル 

等密度 ρfで互いに混ざり合わない非圧縮性液液二相流を表現するため、Model H 

を用いた。各相は組成秩序変数ψによって区別される(相 I: ψI = −1、相 II: ψII = 1)。

流体と固体粒子の運動の連成問題を扱うために、埋め込み境界法(immersed boundary 

method, IBM)を用い、流体および固体粒子の運動をオイラー座標 xおよびラグラン

ジュ座標Xでそれぞれ表現した。非圧縮性二相流体中に存在するN個の球形固体粒

子(半径 aP)を考える。粒子 i (= 1, 2, …, N)の中心位置をXiとすれば、全粒子の濃度

場は 
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と表される。各粒子は厚さ ξP (= 空間格子サイズΔxの 1～2 倍程度)の拡散界面をも

つ smoothed profile 関数によって表現される(Nakayama & Yamamoto, 2005)： 
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Φ(x,t)の値によって、流体(Φ = 0)と粒子(Φ = 1)の領域が区別される。その中間値(0 < Φ 

< 1)をもつ領域は、流体/粒子界面と見なされる。 

粒子の濡れ性を表現するため、粒子内部の組成秩序変数ψが一定値ψP (–1 ≤ ψP ≤ 1)

となるような系の自由エネルギー 
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を設定した。ここで、βfおよび ξfはそれぞれ二相流体の混合エネルギー密度および

拡散界面の厚さを表し、KP は粒子内部の組成秩序変数を設定値 ψP に束縛する強さ

を決める定数(> 0)である。実際の各粒子内部の組成秩序変数は 

     P, d , ,i it t t     x x x  (8) 

で定義される。 

 

2.2.2 時間発展方程式 

IBM として、流体粒子(fluid particle dynamics, FPD; Tanaka & Araki, 2000)法および

smoothed profile method (SPM; Nakayama & Yamamoto, 2005)がよく用いられている。

本研究では、FPD 法を用いた。粒子内部(Φ = 1)の人工流体の粘度 ηPを粒子外部(Φ = 

0)の流体の粘度 ηfよりも十分に高く設定することによって、擬似的に固体粒子が表

現される： 
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このような界面活性粒子/液/液混相流の支配方程式は 
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で与えられる。ここで、Iは単位テンソル、pは圧力、Tは応力テンソル、bは外力

場、fP は「粒子に働く外場と粒子間力が流動場に影響する力」をそれぞれ表す。粒

子表面の法線ベクトルnpおよび化学ポテンシャル μは、それぞれ 
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で与えられる。 

式(11)中の易動度テンソルMfとして、4 つのモデルを適用した： 
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ここで、M0 = αf ξf
2 (αf は正の定数; Jamshidi et al., 2019)であり、nfは二相流体の界面

に垂直なベクトル(Dadvand et al., 2021)を表す： 
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式(15a)で表現される易動度は、組成秩序変数場ψ(x)の値に依存せずに、常に一定で

ある。一方、式(15b)は各相の内部(ψ ≈ −1 or 1)ではほぼ零であるが、界面内部におい

て非零値を示し、界面中央(ψ = 0)において最大値M0を示す。式(15c)で表現される

テンソルは、組成秩序変数場に勾配が生じる領域(|ψ| > 0)において、その垂直方向

に対して化学ポテンシャル場の勾配μ の寄与を零ベクトルに変換するオペレータ

である。 

式(12a)中の界面張力に起因する力Fσとして、3 つのモデルを適用した： 
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この式(17c)は、「粒子由来のΦ を含む項」を除けば continuum surface force (CFS)モ

デル(Brackbill et al., 1992)と一致すること、互いの右辺第 1 項を除けば式(17b)と一致

することに注意せよ。 

FPD 法では、d (= 2, 3)次元における粒子の重心と回転に関する運動方程式は 
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と表される。ここで、各粒子の体積 vP,i、慣性モーメント IP,i、および質量MP,iは 

 P, P P P

2 2
d , , d

i i

d
v t v v a

d


      x x  (20) 

  2 2
P, P P P P P

1
d , ,

3 4i i i

d
I t I I M a

d
         x x x X  (21) 

で与えられる。 



2.2.3 数値計算法 

式 (10)の非圧縮条件、式 (11)の Cahn–Hilliard (CH)方程式および式 (12)の

Navier–Stokes (NS)方程式を、marker-and-cell (MAC)法に基づいて staggered grid 上で

離散化した。時間積分法として、CH 方程式(11)に対して Euler 法および constrained 

interpolation profile (CIP)法を、NS 方程式(12)に対して陽解法[ハイブリッドMAC & 

simplified MAC (SMAC)法]および半陰解法(semi-implicit SMAC 法)をそれぞれ適用し

た。このような種々の時間積分法ばかりではく、種々のモデル(易動度テンソル Mf

の式(15)、界面張力に起因する力Fσの式(17)など)を検討するためには、DNS の実行

プログラムを高速化することが必要不可欠となる。そこで、「非圧縮性条件式(11)

から導出される離散化ポアソン方程式」を反復法(例えばBiCGSTAB 法)ではなく、

離散フーリエ変換(discrete Fourier transform; DFT)法に基づいて直接解くことを最優

先した。 

既報論文(Jamshidi et al., 2019; Dadvand et al., 2021)に掲載されている物性値を用い

て、ベンチマークテストを実行した。主に、Lx×Lyの計算領域を 256×256 grids に分

割して、水相(ψI = −1)中に単一油滴(ψII = 1; 半径 Rd = Lx/4、中心位置 xd)を配置し、

全方向に周期的境界条件を課した(図 4)。この初期条件として、領域の速度をすべて

零に設定し、組成秩序変数ψを「平衡状態で曲率なしの界面」に対する解析解 
1/ 2
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によって近似的に与えた。 

 

2.3. 結果と考察 

2.3.1. 離散Poisson方程式の直接解法 

DFT 法＋tridiagonal matrix algorithm (TDMA)法に基づいて、「非圧縮性条件式(11)

から導出される 2 次元離散 Poisson 方程式」を式変形し直接解いた。その結果、

BiCGSTAB 法(高速かつ安定な反復法の 1 つ)と比較して、約 50 倍の計算速度を示す

DNS 実行プログラムの開発に成功した。これにより、以下に示すような種々の時間

積分法およびモデルの適用とその有効性の検証が可能となった。 



2.3.2. CH方程式の時間積分法 

まず、固体粒子がない系を検討した。CH 方程式(11)に対して、Euler 法および

constrained interpolation profile 法(CIP 法: A 型, B 型, C 型)を適用・実装した。ここで、

CIP 法は「移流項」に対してより正確な数値解を与えることで知られている。その

結果、「速い流れが生じる状態」に対してB 型CIP 法が有効であること、「流れが

ほぼ生じない力学的平衡状態」に対して CIP 法は不適当で Euler 法が有効であるこ

とが分かった。この原因として、流れのほとんどない力学的平衡状態に系が向かう

とき、CIP 法が「非移流項(拡散項など)」の寄与に対して「移流項」の寄与を過度

に強調しているため、数値計算が不安定化したためと考えられる。なお、C 型 CIP

法を用いた場合、数値計算が不安定であった。 

 

2.3.3. NS方程式の時間積分法 

まず、「固体粒子がなく一様密度・非一様粘度の液液二相流」を検討した。NS

方程式(12)に対して、圧力項の取り扱いにハイブリッド MAC/SMAC 法を適用し、

移流項および粘性項を陽的に、(上記CH 方程式の時間積分から次ステップのψが得

られているので)界面張力項を疑似陰的にそれぞれ扱った。その結果、時間刻み Δt

が十分に小さければ、下記の半陰解法によるシミュレーション挙動とほぼ同じとな

った。 

NS 方程式(12)に対して、semi-implicit SMAC 法という半陰解法に基づき、移流項

および「粘性項の非対角成分」を陽的に、「粘性項の対角成分」を陰的に、界面張

力項を疑似陰的にそれぞれ扱った。得られる離散化 NS 方程式は、係数に非一様粘

度が現れる速度(u, v)に関する連立方程式であり、u方向と v方向とは分離している。

このような「uに関する連立方程式」および「vに関する連立方程式」をBiCGSTAB

法によってそれぞれ解いた。その結果、上記の陽解法によるシミュレーション挙動

とほぼ同じとなった。 

さらに「粘性項の非対角成分」を陰的に扱うと、「各方程式に uと vとが同時に

現れる連立方程式」となってしまう。このような「uおよび vに関する連立方程式」

に対しても BiCGSTAB 法を適用したが、一様密度・一様粘度の液液二相流に対し

ても明らかに奇妙なシミュレーション結果しか得られなかった。この問題に対する

原因究明および解決は、筆者の今後の研究課題である。 

semi-implicit SMAC 法において、粘度が一様である場合、圧力場の補正項を速度

場に対して厳密に反映させることができる。一方、粘度が一様でない場合、圧力場

の補正項を速度場に対して厳密に反映させるためには、同一時間ステップ内で反復

計算が必要となる。この実装と検証も、筆者の今後の研究課題である。 

 



2.3.4. CH方程式の易動度テンソル 

式(11)中の易動度テンソルMfとして、式(15a)～(15d)によって表現される 4 つのモ

デルを適用した。式(15a)を用いた場合、その他の式(15b)～(15d)を用いた場合と比較

して、疑似流れ(spurious currents)の発生が抑制され、系がより短時間で力学的平衡状

態に近づいた(図 4 を参照せよ)。「曲率を有する界面」の組成秩序変数 ψの平衡状

態値は「式(22)で与えられた初期値」からわずかに外れているため、この差異を最

も効率的に解消させたのが式(15a)を用いた場合ということになる。しかしながら、

大小の液滴が共存する系に対して式(15a)を適用した場合、液滴どうしが十分に離れ

ていても、互いに接触することなく小液滴がさらに小さくなってやがて消失し、大

液滴がさらに大きくなるという問題が生じることがある。このような系に対して

は、初期条件を工夫して設定した上で式(15b)～(15d)を適用すれば、問題解決策の一

つになる可能性がある。 

 

 

図4 計算領域Lx×Ly = 256×256 gridsの水相(ψI = −1)中に存在する単一油滴(ψII = 1; 

半径 Rd = Lx/4)のシミュレーション結果：(左上) 系全体の運動エネルギーの時間変

化; (右上, 左下, 右下) 式(17b)の界面張力モデルの 1.5×106ステップ後の物理量。 



2.3.5. NS方程式の界面張力 

式(12a)中の界面張力に起因する力Fσとして、式(17a)～(17c)によって表現される 3

つのモデルを適用したシミュレーション結果を、図 4 に示す。式(17c)によるシミュ

レーション結果において、化学ポテンシャルが空間的に一様にならないなど、非物

理的な挙動が散見された。一方、式(17a)および式(17b)はほぼ同じようなシミュレー

ション結果を与えたが、式(17b)の方がLaplace 圧(Δp = σ/Rd; 界面張力の解析解 σ = 

23/2βf /3ξf)をより高い精度で再現した。 

 

2.3.6. 濡れ性粒子を含んだ等密度・非一様粘度の液液二相流 

上記の検討結果を踏まえ、CH 方程式(11) with (15a)に対してEuler 法を、NS 方程式

(12) with (17b)に対してハイブリッドMAC/SMAC 法をそれぞれ適用した上で、運動

方程式(18),(19)によって固体粒子を追跡した。残念ながら、「流れがほぼ生じない

力学的平衡状態に近い系」に対して、非物理的な挙動が散見された。この主原因と

して、「粒子内部(Φ = 1)の人工流体の粘度 ηPを粒子外部(Φ = 0)の流体の粘度 ηfの

50 倍に設定すること(ηP = 50ηf)により擬似的に固体粒子を表現する FPD 法」を筆者

は疑っている。今後は、IBM として FPD 法の代わりに SPM を実装して検証する予

定である。 

 

2.4. おわりに 

「濡れ性粒子を含んだ二相流体のDNS」は、二相流の表現方法、固体粒子の表現

方法、およびそれらの支配方程式を解くためのアルゴリズムなどが選択され巧みに

組み合わされたものである。そこで本研究では、まずは液液二相流体の DNS にか

かる複数の要素手法を実装し、それらを比較・検討した。離散化 Poisson 方程式の

直接解法の実装によって、DNS の高速化に成功した。これにより、時間発展方程式

(CH 方程式および NS 方程式)に対して複数の数値計算法、CH 方程式に対して 4 つ

の易動度テンソル、NS 方程式に対して 3 つの界面張力モデルを実装し比較・検討

することができた。今後は、他の多くの要素手法(特に SPM による固体粒子の取扱

い)も実装しながら、「濡れ性粒子を含んだ気液二相流体の DNS」の実現を目指し

たい。 

最後に、研究助成を頂きました粉体工学情報センターに感謝の意を表します。 



３．研究発表 
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